翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

proper base change theorem : ウィキペディア英語版
proper base change theorem
:''There is also a proper base change theorem in topology. For that, see base change map.''
In algebraic geometry, there are at least two versions of proper base change theorems: one for ordinary cohomology and the other for étale cohomology.
==In ordinary cohomology==
The proper base change theorem states the following: let f: X \to S be a proper morphism between noetherian schemes, and \mathcal ''S''-flat coherent sheaf on X. If S = \operatorname A, then there is a finite complex 0 \to K^0 \to K^1 \to \cdots \to K^n \to 0 of finitely generated projective ''A''-modules and a natural isomorphism of functors
:H^p(X \times_S \operatorname -, \mathcal \otimes_A -) \to H^p(K^\bullet \otimes_A -), p \ge 0
on the category of A-algebras.
There are several corollaries to the theorem, some of which are also referred to as proper base change theorems: (the higher direct image R^p f_
* \mathcal is coherent since ''f'' is proper.)
Corollary 1 (semicontinuity theorem): Let ''f'' and \mathcal as in the theorem (but ''S'' may not be affine). Then we have:
*(i) For each p \ge 0, the function s \mapsto \dim_ H^p (X_s, \mathcal_s): S \to \mathbb is upper semicontinuous.
*(ii) The function s \mapsto \chi(\mathcal_s) is locally constant, where \chi(\mathcal) denotes the Euler characteristic.
Corollary 2: Assume ''S'' is reduced and connected. Then for each p \ge 0 the following are equivalent
*(i) s \mapsto \dim_ H^p (X_s, \mathcal_s) is constant.
*(ii) R^p f_
* \mathcal is locally free and the natural map
::R^p f_
* \mathcal \otimes_ k(s) \to H^p(X_s, \mathcal_s)
:is an isomorphism for all s \in S.
:Furthermore, if these conditions hold, then the natural map
::R^ f_
* \mathcal \otimes_ k(s) \to H^(X_s, \mathcal_s)
:is an isomorphism for all s \in S.
Corollary 3: Assume that for some ''p'' H^p(X_s, \mathcal_s) = 0 for all s \in S. Then
the natural map
::R^ f_
* \mathcal \otimes_ k(s) \to H^(X_s, \mathcal_s)
:is an isomorphism for all s \in S.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「proper base change theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.